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Basic properties of the integers

This chapter discusses some of the basic properties of the integers, including the
notions of divisibility and primality, unique factorization into primes, greatest com-
mon divisors, and least common multiples.

1.1 Divisibility and primality
A central concept in number theory is divisibility.

Consider the integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}. For a, b ∈ Z, we say that a
divides b if az = b for some z ∈ Z. If a divides b, we write a | b, and we may say
that a is a divisor of b, or that b is a multiple of a, or that b is divisible by a. If a
does not divide b, then we write a - b.

We first state some simple facts about divisibility:

Theorem 1.1. For all a, b, c ∈ Z, we have
(i) a | a, 1 | a, and a | 0;

(ii) 0 | a if and only if a = 0;
(iii) a | b if and only if −a | b if and only if a | −b;
(iv) a | b and a | c implies a | (b + c);
(v) a | b and b | c implies a | c.

Proof. These properties can be easily derived from the definition of divisibility,
using elementary algebraic properties of the integers. For example, a | a because
we can write a · 1 = a; 1 | a because we can write 1 · a = a; a | 0 because we can
write a ·0 = 0. We leave it as an easy exercise for the reader to verify the remaining
properties. 2

We make a simple observation: if a | b and b 6= 0, then 1 ≤ |a| ≤ |b|. Indeed,
if az = b 6= 0 for some integer z, then a 6= 0 and z 6= 0; it follows that |a| ≥ 1,
|z| ≥ 1, and so |a| ≤ |a||z| = |b|.
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Theorem 1.2. For all a, b ∈ Z, we have a | b and b | a if and only if a = ±b. In
particular, for every a ∈ Z, we have a | 1 if and only if a = ±1.

Proof. Clearly, if a = ±b, then a | b and b | a. So let us assume that a | b and
b | a, and prove that a = ±b. If either of a or b are zero, then the other must be zero
as well. So assume that neither is zero. By the above observation, a | b implies
|a| ≤ |b|, and b | a implies |b| ≤ |a|; thus, |a| = |b|, and so a = ±b. That proves the
first statement. The second statement follows from the first by setting b := 1, and
noting that 1 | a. 2

The product of any two non-zero integers is again non-zero. This implies the
usual cancellation law: if a, b, and c are integers such that a 6= 0 and ab = ac, then
we must have b = c; indeed, ab = ac implies a(b − c) = 0, and so a 6= 0 implies
b − c = 0, and hence b = c.

Primes and composites. Let n be a positive integer. Trivially, 1 and n divide n.
If n > 1 and no other positive integers besides 1 and n divide n, then we say n is
prime. If n > 1 but n is not prime, then we say that n is composite. The number 1
is not considered to be either prime or composite. Evidently, n is composite if and
only if n = ab for some integers a, b with 1 < a < n and 1 < b < n. The first few
primes are

2, 3, 5, 7, 11, 13, 17, . . . .

While it is possible to extend the definition of prime and composite to negative
integers, we shall not do so in this text: whenever we speak of a prime or composite
number, we mean a positive integer.

A basic fact is that every non-zero integer can be expressed as a signed product
of primes in an essentially unique way. More precisely:

Theorem 1.3 (Fundamental theorem of arithmetic). Every non-zero integer n
can be expressed as

n = ±pe1
1 · · · p

er
r ,

where p1, . . . , pr are distinct primes and e1, . . . , er are positive integers. Moreover,
this expression is unique, up to a reordering of the primes.

Note that if n = ±1 in the above theorem, then r = 0, and the product of zero
terms is interpreted (as usual) as 1.

The theorem intuitively says that the primes act as the “building blocks” out
of which all non-zero integers can be formed by multiplication (and negation).
The reader may be so familiar with this fact that he may feel it is somehow “self
evident,” requiring no proof; however, this feeling is simply a delusion, and most
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of the rest of this section and the next are devoted to developing a proof of this
theorem. We shall give a quite leisurely proof, introducing a number of other very
important tools and concepts along the way that will be useful later.

To prove Theorem 1.3, we may clearly assume that n is positive, since otherwise,
we may multiply n by −1 and reduce to the case where n is positive.

The proof of the existence part of Theorem 1.3 is easy. This amounts to showing
that every positive integer n can be expressed as a product (possibly empty) of
primes. We may prove this by induction on n. If n = 1, the statement is true, as
n is the product of zero primes. Now let n > 1, and assume that every positive
integer smaller than n can be expressed as a product of primes. If n is a prime,
then the statement is true, as n is the product of one prime. Assume, then, that n
is composite, so that there exist a, b ∈ Z with 1 < a < n, 1 < b < n, and n = ab.
By the induction hypothesis, both a and b can be expressed as a product of primes,
and so the same holds for n.

The uniqueness part of Theorem 1.3 is the hard part. An essential ingredient in
this proof is the following:

Theorem 1.4 (Division with remainder property). Let a, b ∈ Z with b > 0.
Then there exist unique q, r ∈ Z such that a = bq + r and 0 ≤ r < b.

Proof. Consider the set S of non-negative integers of the form a − bt with t ∈ Z.
This set is clearly non-empty; indeed, if a ≥ 0, set t := 0, and if a < 0, set t := a.
Since every non-empty set of non-negative integers contains a minimum, we define
r to be the smallest element of S. By definition, r is of the form r = a − bq for
some q ∈ Z, and r ≥ 0. Also, we must have r < b, since otherwise, r − b would be
an element of S smaller than r, contradicting the minimality of r; indeed, if r ≥ b,
then we would have 0 ≤ r − b = a − b(q + 1).

That proves the existence of r and q. For uniqueness, suppose that a = bq + r
and a = bq′ + r′, where 0 ≤ r < b and 0 ≤ r′ < b. Then subtracting these two
equations and rearranging terms, we obtain

r′ − r = b(q − q′).

Thus, r′ − r is a multiple of b; however, 0 ≤ r < b and 0 ≤ r′ < b implies
|r′ − r| < b; therefore, the only possibility is r′ − r = 0. Moreover, 0 = b(q − q′)
and b 6= 0 implies q − q′ = 0. 2

Theorem 1.4 can be visualized as follows:

0 r b 2b 3b a 4b
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Starting with a, we subtract (or add, if a is negative) the value b until we end up
with a number in the interval [0, b).

Floors and ceilings. Let us briefly recall the usual floor and ceiling functions,
denoted b·c and d·e, respectively. These are functions from R (the real numbers)
to Z. For x ∈ R, bxc is the greatest integer m ≤ x; equivalently, bxc is the unique
integer m such that m ≤ x < m + 1, or put another way, such that x = m + ε for
some ε ∈ [0, 1). Also, dxe is the smallest integer m ≥ x; equivalently, dxe is the
unique integer m such that m− 1 < x ≤ m, or put another way, such that x = m− ε
for some ε ∈ [0, 1).

The mod operator. Now let a, b ∈ Z with b > 0. If q and r are the unique integers
from Theorem 1.4 that satisfy a = bq + r and 0 ≤ r < b, we define

a mod b := r;

that is, a mod b denotes the remainder in dividing a by b. It is clear that b | a if
and only if a mod b = 0. Dividing both sides of the equation a = bq + r by b, we
obtain a/b = q + r/b. Since q ∈ Z and r/b ∈ [0, 1), we see that q = ba/bc. Thus,

(a mod b) = a − bba/bc.

One can use this equation to extend the definition of a mod b to all integers a and
b, with b 6= 0; that is, for b < 0, we simply define a mod b to be a − bba/bc.

Theorem 1.4 may be generalized so that when dividing an integer a by a positive
integer b, the remainder is placed in an interval other than [0, b). Let x be any
real number, and consider the interval [x, x + b). As the reader may easily verify,
this interval contains precisely b integers, namely, dxe, . . . , dxe + b − 1. Applying
Theorem 1.4 with a − dxe in place of a, we obtain:

Theorem 1.5. Let a, b ∈ Z with b > 0, and let x ∈ R. Then there exist unique
q, r ∈ Z such that a = bq + r and r ∈ [x, x + b).

EXERCISE 1.1. Let a, b, d ∈ Z with d 6= 0. Show that a | b if and only if da | db.

EXERCISE 1.2. Let n be a composite integer. Show that there exists a prime p
dividing n, with p ≤ n1/2.

EXERCISE 1.3. Letm be a positive integer. Show that for every real number x ≥ 1,
the number of multiples of m in the interval [1, x] is bx/mc; in particular, for every
integer n ≥ 1, the number of multiples of m among 1, . . . , n is bn/mc.

EXERCISE 1.4. Let x ∈ R. Show that 2bxc ≤ b2xc ≤ 2bxc + 1.
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EXERCISE 1.5. Let x ∈ R and n ∈ Z with n > 0. Show that bbxc/nc = bx/nc; in
particular, bba/bc/cc = ba/bcc for all positive integers a, b, c.

EXERCISE 1.6. Let a, b ∈ Z with b < 0. Show that (a mod b) ∈ (b, 0].

EXERCISE 1.7. Show that Theorem 1.5 also holds for the interval (x, x+ b]. Does
it hold in general for the intervals [x, x + b] or (x, x + b)?

1.2 Ideals and greatest common divisors
To carry on with the proof of Theorem 1.3, we introduce the notion of an ideal of
Z, which is a non-empty set of integers that is closed under addition, and closed
under multiplication by an arbitrary integer. That is, a non-empty set I ⊆ Z is an
ideal if and only if for all a, b ∈ I and all z ∈ Z, we have

a + b ∈ I and az ∈ I .

Besides its utility in proving Theorem 1.3, the notion of an ideal is quite useful in
a number of contexts, which will be explored later.

It is easy to see that every ideal I contains 0: since a ∈ I for some integer a,
we have 0 = a · 0 ∈ I . Also, note that if an ideal I contains an integer a, it also
contains −a, since −a = a · (−1) ∈ I . Thus, if an ideal contains a and b, it also
contains a − b. It is clear that {0} and Z are ideals. Moreover, an ideal I is equal
to Z if and only if 1 ∈ I; to see this, note that 1 ∈ I implies that for every z ∈ Z,
we have z = 1 · z ∈ I , and hence I = Z; conversely, if I = Z, then in particular,
1 ∈ I .

For a ∈ Z, define aZ := {az : z ∈ Z}; that is, aZ is the set of all multiples of a.
If a = 0, then clearly aZ = {0}; otherwise, aZ consists of the distinct integers

. . . ,−3a,−2a,−a, 0, a, 2a, 3a, . . . .

It is easy to see that aZ is an ideal: for all az, az′ ∈ aZ and z′′ ∈ Z, we have
az + az′ = a(z + z′) ∈ aZ and (az)z′′ = a(zz′′) ∈ aZ. The ideal aZ is called
the ideal generated by a, and an ideal of the form aZ for some a ∈ Z is called a
principal ideal.

Observe that for all a, b ∈ Z, we have b ∈ aZ if and only if a | b. Also
observe that for every ideal I , we have b ∈ I if and only if bZ ⊆ I . Both of
these observations are simple consequences of the definitions, as the reader may
verify. Combining these two observations, we see that bZ ⊆ aZ if and only if a | b.

Suppose I1 and I2 are ideals. Then it is not hard to see that the set

I1 + I2 := {a1 + a2 : a1 ∈ I1, a2 ∈ I2}
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is also an ideal. Indeed, suppose a1 + a2 ∈ I1 + I2 and b1 + b2 ∈ I1 + I2. Then we
have (a1 + a2) + (b1 + b2) = (a1 + b1) + (a2 + b2) ∈ I1 + I2, and for every z ∈ Z,
we have (a1 + a2)z = a1z + a2z ∈ I1 + I2.

Example 1.1. Consider the principal ideal 3Z. This consists of all multiples of 3;
that is, 3Z = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}. 2

Example 1.2. Consider the ideal 3Z+ 5Z. This ideal contains 3 · 2 + 5 · (−1) = 1.
Since it contains 1, it contains all integers; that is, 3Z + 5Z = Z. 2

Example 1.3. Consider the ideal 4Z+ 6Z. This ideal contains 4 · (−1) + 6 · 1 = 2,
and therefore, it contains all even integers. It does not contain any odd integers,
since the sum of two even integers is again even. Thus, 4Z + 6Z = 2Z. 2

In the previous two examples, we defined an ideal that turned out upon closer
inspection to be a principal ideal. This was no accident: the following theorem
says that all ideals of Z are principal.

Theorem 1.6. Let I be an ideal of Z. Then there exists a unique non-negative
integer d such that I = dZ.

Proof. We first prove the existence part of the theorem. If I = {0}, then d = 0
does the job, so let us assume that I 6= {0}. Since I contains non-zero integers, it
must contain positive integers, since if a ∈ I then so is −a. Let d be the smallest
positive integer in I . We want to show that I = dZ.

We first show that I ⊆ dZ. To this end, let a be any element in I . It suffices
to show that d | a. Using the division with remainder property, write a = dq + r,
where 0 ≤ r < d. Then by the closure properties of ideals, one sees that r = a−dq
is also an element of I , and by the minimality of the choice of d, we must have
r = 0. Thus, d | a.

We have shown that I ⊆ dZ. The fact that dZ ⊆ I follows from the fact that
d ∈ I . Thus, I = dZ.

That proves the existence part of the theorem. For uniqueness, note that if
dZ = eZ for some non-negative integer e, then d | e and e | d, from which it
follows by Theorem 1.2 that d = ±e; since d and e are non-negative, we must have
d = e. 2

Greatest common divisors. For a, b ∈ Z, we call d ∈ Z a common divisor of a
and b if d | a and d | b; moreover, we call such a d a greatest common divisor of
a and b if d is non-negative and all other common divisors of a and b divide d.

Theorem 1.7. For all a, b ∈ Z, there exists a unique greatest common divisor d of
a and b, and moreover, aZ + bZ = dZ.
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Proof. We apply the previous theorem to the ideal I := aZ + bZ. Let d ∈ Z with
I = dZ, as in that theorem. We wish to show that d is a greatest common divisor
of a and b. Note that a, b, d ∈ I and d is non-negative.

Since a ∈ I = dZ, we see that d | a; similarly, d | b. So we see that d is a
common divisor of a and b.

Since d ∈ I = aZ + bZ, there exist s, t ∈ Z such that as + bt = d. Now suppose
a = a′d′ and b = b′d′ for some a′, b′, d′ ∈ Z. Then the equation as+ bt = d implies
that d′(a′s+ b′t) = d, which says that d′ | d. Thus, any common divisor d′ of a and
b divides d.

That proves that d is a greatest common divisor of a and b. For uniqueness, note
that if e is a greatest common divisor of a and b, then d | e and e | d, and hence
d = ±e; since both d and e are non-negative by definition, we have d = e. 2

For a, b ∈ Z, we write gcd(a, b) for the greatest common divisor of a and b. We
say that a, b ∈ Z are relatively prime if gcd(a, b) = 1, which is the same as saying
that the only common divisors of a and b are ±1.

The following is essentially just a restatement of Theorem 1.7, but we state it
here for emphasis:

Theorem 1.8. Let a, b, r ∈ Z and let d := gcd(a, b). Then there exist s, t ∈ Z such
that as + bt = r if and only if d | r. In particular, a and b are relatively prime if
and only if there exist integers s and t such that as + bt = 1.

Proof. We have

as + bt = r for some s, t ∈ Z
⇐⇒ r ∈ aZ + bZ
⇐⇒ r ∈ dZ (by Theorem 1.7)

⇐⇒ d | r.

That proves the first statement. The second statement follows from the first, setting
r := 1. 2

Note that as we have defined it, gcd(0, 0) = 0. Also note that when at least one
of a or b are non-zero, gcd(a, b) may be characterized as the largest positive integer
that divides both a and b, and as the smallest positive integer that can be expressed
as as + bt for integers s and t.

Theorem 1.9. Let a, b, c ∈ Z such that c | ab and gcd(a, c) = 1. Then c | b.

Proof. Suppose that c | ab and gcd(a, c) = 1. Then since gcd(a, c) = 1, by
Theorem 1.8 we have as + ct = 1 for some s, t ∈ Z. Multiplying this equation by
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b, we obtain

abs + cbt = b. (1.1)

Since c divides ab by hypothesis, and since c clearly divides cbt, it follows that c
divides the left-hand side of (1.1), and hence that c divides b. 2

Suppose that p is a prime and a is any integer. As the only divisors of p are ±1
and ±p, we have

p | a =⇒ gcd(a, p) = p, and

p - a =⇒ gcd(a, p) = 1.

Combining this observation with the previous theorem, we have:

Theorem 1.10. Let p be prime, and let a, b ∈ Z. Then p | ab implies that p | a or
p | b.

Proof. Assume that p | ab. If p | a, we are done, so assume that p - a. By the above
observation, gcd(a, p) = 1, and so by Theorem 1.9, we have p | b. 2

An obvious corollary to Theorem 1.10 is that if a1, . . . , ak are integers, and if p
is a prime that divides the product a1 · · · ak, then p | ai for some i = 1, . . . , k. This
is easily proved by induction on k. For k = 1, the statement is trivially true. Now
let k > 1, and assume that statement holds for k−1. Then by Theorem 1.10, either
p | a1 or p | a2 · · · ak; if p | a1, we are done; otherwise, by induction, p divides one
of a2, . . . , ak.

Finishing the proof of Theorem 1.3. We are now in a position to prove the unique-
ness part of Theorem 1.3, which we can state as follows: if p1, . . . , pr are primes
(not necessarily distinct), and q1, . . . , qs are primes (also not necessarily distinct),
such that

p1 · · · pr = q1 · · · qs, (1.2)

then (p1, . . . , pr) is just a reordering of (q1, . . . , qs). We may prove this by induction
on r. If r = 0, we must have s = 0 and we are done. Now suppose r > 0, and
that the statement holds for r − 1. Since r > 0, we clearly must have s > 0.
Also, as p1 obviously divides the left-hand side of (1.2), it must also divide the
right-hand side of (1.2); that is, p1 | q1 · · · qs. It follows from (the corollary to)
Theorem 1.10 that p1 | qj for some j = 1, . . . , s, and moreover, since qj is prime,
we must have p1 = qj. Thus, we may cancel p1 from the left-hand side of (1.2)
and qj from the right-hand side of (1.2), and the statement now follows from the
induction hypothesis. That proves the uniqueness part of Theorem 1.3.
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EXERCISE 1.8. Let I be a non-empty set of integers that is closed under addition
(i.e., a+ b ∈ I for all a, b ∈ I). Show that I is an ideal if and only if −a ∈ I for all
a ∈ I .

EXERCISE 1.9. Show that for all integers a, b, c, we have:

(a) gcd(a, b) = gcd(b, a);

(b) gcd(a, b) = |a| ⇐⇒ a | b;
(c) gcd(a, 0) = gcd(a, a) = |a| and gcd(a, 1) = 1;

(d) gcd(ca, cb) = |c| gcd(a, b).

EXERCISE 1.10. Show that for all integers a, b with d := gcd(a, b) 6= 0, we have
gcd(a/d, b/d) = 1.

EXERCISE 1.11. Let n be an integer. Show that if a, b are relatively prime integers,
each of which divides n, then ab divides n.

EXERCISE 1.12. Show that two integers are relatively prime if and only if there is
no one prime that divides both of them.

EXERCISE 1.13. Let a, b1, . . . , bk be integers. Show that gcd(a, b1 · · · bk) = 1 if
and only if gcd(a, bi) = 1 for i = 1, . . . , k.

EXERCISE 1.14. Let p be a prime and k an integer, with 0 < k < p. Show that the
binomial coefficient

(

p

k

)

=
p!

k!(p − k)!
,

which is an integer (see §A2), is divisible by p.

EXERCISE 1.15. An integer a is called square-free if it is not divisible by the
square of any integer greater than 1. Show that:

(a) a is square-free if and only if a = ±p1 · · · pr, where the pi’s are distinct
primes;

(b) every positive integer n can be expressed uniquely as n = ab2, where a and
b are positive integers, and a is square-free.

EXERCISE 1.16. For each positive integer m, let Im denote {0, . . . ,m − 1}. Let
a, b be positive integers, and consider the map

τ : Ib × Ia → Iab

(s, t) 7→ (as + bt) mod ab.

Show τ is a bijection if and only if gcd(a, b) = 1.
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EXERCISE 1.17. Let a, b, c be positive integers satisfying gcd(a, b) = 1 and
c ≥ (a − 1)(b − 1). Show that there exist non-negative integers s, t such that
c = as + bt.

EXERCISE 1.18. For each positive integer n, let Dn denote the set of positive
divisors of n. Let n1, n2 be relatively prime, positive integers. Show that the sets
Dn1 × Dn2 and Dn1n2 are in one-to-one correspondence, via the map that sends
(d1, d2) ∈ Dn1 ×Dn2 to d1d2.

1.3 Some consequences of unique factorization
The following theorem is a consequence of just the existence part of Theorem 1.3:

Theorem 1.11. There are infinitely many primes.

Proof. By way of contradiction, suppose that there were only finitely many primes;
call them p1, . . . , pk. Then set M :=

∏k
i=1 pi and N := M + 1. Consider a prime

p that divides N . There must be at least one such prime p, since N ≥ 2, and
every positive integer can be written as a product of primes. Clearly, p cannot
equal any of the pi’s, since if it did, then p would divide M , and hence also divide
N −M = 1, which is impossible. Therefore, the prime p is not among p1, . . . , pk,
which contradicts our assumption that these are the only primes. 2

For each prime p, we may define the function νp, mapping non-zero integers to
non-negative integers, as follows: for every integer n 6= 0, if n = pem, where p - m,
then νp(n) := e. We may then write the factorization of n into primes as

n = ±
∏

p

pνp(n),

where the product is over all primes p; although syntactically this is an infinite
product, all but finitely many of its terms are equal to 1, and so this expression
makes sense.

Observe that if a and b are non-zero integers, then

νp(a · b) = νp(a) + νp(b) for all primes p, (1.3)

and

a | b ⇐⇒ νp(a) ≤ νp(b) for all primes p. (1.4)

From this, it is clear that

gcd(a, b) =
∏

p

pmin(νp(a),νp(b)).
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Least common multiples. For a, b ∈ Z, a common multiple of a and b is an
integer m such that a | m and b | m; moreover, such an m is the least common
multiple of a and b if m is non-negative and m divides all common multiples of
a and b. It is easy to see that the least common multiple exists and is unique,
and we denote the least common multiple of a and b by lcm(a, b). Indeed, for all
a, b ∈ Z, if either a or b are zero, the only common multiple of a and b is 0, and so
lcm(a, b) = 0; otherwise, if neither a nor b are zero, we have

lcm(a, b) =
∏

p

pmax(νp(a),νp(b)),

or equivalently, lcm(a, b) may be characterized as the smallest positive integer
divisible by both a and b.

It is convenient to extend the domain of definition of νp to include 0, defining
νp(0) := ∞. If we interpret expressions involving “∞” appropriately (see Prelimi-
naries), then for arbitrary a, b ∈ Z, both (1.3) and (1.4) hold, and in addition,

νp(gcd(a, b)) = min(νp(a), νp(b)) and νp(lcm(a, b)) = max(νp(a), νp(b))

for all primes p.

Generalizing gcd’s and lcm’s to many integers. It is easy to generalize the
notions of greatest common divisor and least common multiple from two integers
to many integers. Let a1, . . . , ak be integers. We call d ∈ Z a common divisor
of a1, . . . , ak if d | ai for i = 1, . . . , k; moreover, we call such a d the greatest
common divisor of a1, . . . , ak if d is non-negative and all other common divi-
sors of a1, . . . , ak divide d. The greatest common divisor of a1, . . . , ak is denoted
gcd(a1, . . . , ak) and is the unique non-negative integer d satisfying

νp(d) = min(νp(a1), . . . , νp(ak)) for all primes p.

Analogously, we call m ∈ Z a common multiple of a1, . . . , ak if ai | m for all
i = 1, . . . , k; moreover, such an m is called the least common multiple of a1, . . . , ak
if m divides all common multiples of a1, . . . , ak. The least common multiple of
a1, . . . , ak is denoted lcm(a1, . . . , ak) and is the unique non-negative integer m sat-
isfying

νp(m) = max(νp(a1), . . . , νp(ak)) for all primes p.

Finally, we say that the family {ai}ki=1 is pairwise relatively prime if for all indices
i, j with i 6= j, we have gcd(ai, aj) = 1. Certainly, if {ai}ki=1 is pairwise relatively
prime, and k > 1, then gcd(a1, . . . , ak) = 1; however, gcd(a1, . . . , ak) = 1 does not
imply that {ai}ki=1 is pairwise relatively prime.
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Rational numbers. Consider the rational numbers Q = {a/b : a, b ∈ Z, b 6= 0}.
Given any rational number a/b, if we set d := gcd(a, b), and define the integers
a0 := a/d and b0 := b/d, then we have a/b = a0/b0 and gcd(a0, b0) = 1. More-
over, if a1/b1 = a0/b0, then we have a1b0 = a0b1, and so b0 | a0b1; also, since
gcd(a0, b0) = 1, we see that b0 | b1; writing b1 = b0c, we see that a1 = a0c. Thus,
we can represent every rational number as a fraction in lowest terms, which means
a fraction of the form a0/b0 where a0 and b0 are relatively prime; moreover, the
values of a0 and b0 are uniquely determined up to sign, and every other fraction
that represents the same rational number is of the form a0c/b0c, for some non-zero
integer c.

EXERCISE 1.19. Let n be an integer. Generalizing Exercise 1.11, show that if
{ai}ki=1 is a pairwise relatively prime family of integers, where each ai divides n,
then their product

∏k
i=1 ai also divides n.

EXERCISE 1.20. Show that for all integers a, b, c, we have:
(a) lcm(a, b) = lcm(b, a);
(b) lcm(a, b) = |a| ⇐⇒ b | a;
(c) lcm(a, a) = lcm(a, 1) = |a|;
(d) lcm(ca, cb) = |c| lcm(a, b).

EXERCISE 1.21. Show that for all integers a, b, we have:
(a) gcd(a, b) · lcm(a, b) = |ab|;
(b) gcd(a, b) = 1 =⇒ lcm(a, b) = |ab|.

EXERCISE 1.22. Let a1, . . . , ak ∈ Z with k > 1. Show that:

gcd(a1, . . . , ak) = gcd(a1, gcd(a2, . . . , ak)) = gcd(gcd(a1, . . . , ak−1), ak);

lcm(a1, . . . , ak) = lcm(a1, lcm(a2, . . . , ak)) = lcm(lcm(a1, . . . , ak−1), ak).

EXERCISE 1.23. Let a1, . . . , ak ∈ Z with d := gcd(a1, . . . , ak). Show that dZ =
a1Z + · · · + akZ; in particular, there exist integers z1, . . . , zk such that d = a1z1 +
· · · + akzk.

EXERCISE 1.24. Show that if {ai}ki=1 is a pairwise relatively prime family of inte-
gers, then lcm(a1, . . . , ak) = |a1 · · · ak|.

EXERCISE 1.25. Show that every non-zero x ∈ Q can be expressed as

x = ±pe1
1 · · · p

er
r ,

where the pi’s are distinct primes and the ei’s are non-zero integers, and that this
expression in unique up to a reordering of the primes.



1.3 Some consequences of unique factorization 13

EXERCISE 1.26. Let n and k be positive integers, and suppose x ∈ Q such that
xk = n for some x ∈ Q. Show that x ∈ Z. In other words, k

√
n is either an integer

or is irrational.

EXERCISE 1.27. Show that gcd(a + b, lcm(a, b)) = gcd(a, b) for all a, b ∈ Z.

EXERCISE 1.28. Show that for every positive integer k, there exist k consecutive
composite integers. Thus, there are arbitrarily large gaps between primes.

EXERCISE 1.29. Let p be a prime. Show that for all a, b ∈ Z, we have νp(a+ b) ≥
min{νp(a), νp(b)}, and νp(a + b) = νp(a) if νp(a) < νp(b).

EXERCISE 1.30. For a given prime p, we may extend the domain of definition of
νp from Z to Q: for non-zero integers a, b, let us define νp(a/b) := νp(a) − νp(b).
Show that:

(a) this definition of νp(a/b) is unambiguous, in the sense that it does not
depend on the particular choice of a and b;

(b) for all x, y ∈ Q, we have νp(xy) = νp(x) + νp(y);

(c) for all x, y ∈ Q, we have νp(x + y) ≥ min{νp(x), νp(y)}, and νp(x + y) =
νp(x) if νp(x) < νp(y);

(d) for all non-zero x ∈ Q, we have x = ±
∏

p p
νp(x), where the product is over

all primes, and all but a finite number of terms in the product are equal to 1;

(e) for all x ∈ Q, we have x ∈ Z if and only if νp(x) ≥ 0 for all primes p.

EXERCISE 1.31. Let n be a positive integer, and let 2k be the highest power of 2
in the set S := {1, . . . , n}. Show that 2k does not divide any other element in S.

EXERCISE 1.32. Let n ∈ Z with n > 1. Show that
∑n
i=1 1/i is not an integer.

EXERCISE 1.33. Let n be a positive integer, and let Cn denote the number of pairs
of integers (a, b) with a, b ∈ {1, . . . , n} and gcd(a, b) = 1, and let Fn be the number
of distinct rational numbers a/b, where 0 ≤ a < b ≤ n.

(a) Show that Fn = (Cn + 1)/2.

(b) Show that Cn ≥ n2/4. Hint: first show that Cn ≥ n2(1 −
∑

d≥2 1/d2), and
then show that

∑

d≥2 1/d2 ≤ 3/4.

EXERCISE 1.34. This exercise develops a characterization of least common mul-
tiples in terms of ideals.

(a) Arguing directly from the definition of an ideal, show that if I and J are
ideals of Z, then so is I ∩ J .

(b) Let a, b ∈ Z, and consider the ideals I := aZ and J := bZ. By part
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(a), we know that I ∩ J is an ideal. By Theorem 1.6, we know that
I ∩ J = mZ for some uniquely determined non-negative integer m. Show
that m = lcm(a, b).


